Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573820

RESUMO

Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.


Assuntos
Trombocitopenia , Cloridrato de Vilazodona , Camundongos , Animais , Cloridrato de Vilazodona/efeitos adversos , Cloridrato de Vilazodona/metabolismo , Peixe-Zebra , Receptor 5-HT1A de Serotonina/metabolismo , Plaquetas/metabolismo , Trombocitopenia/tratamento farmacológico , Trombocitopenia/metabolismo , Megacariócitos/metabolismo , Trombopoese
2.
Biomolecules ; 14(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540688

RESUMO

(1) Background: Radiation-induced thrombocytopenia (RIT) often occurs in cancer patients undergoing radiation therapy, which can result in morbidity and even death. However, a notable deficiency exists in the availability of specific drugs designed for the treatment of RIT. (2) Methods: In our pursuit of new drugs for RIT treatment, we employed three deep learning (DL) algorithms: convolutional neural network (CNN), deep neural network (DNN), and a hybrid neural network that combines the computational characteristics of the two. These algorithms construct computational models that can screen compounds for drug activity by utilizing the distinct physicochemical properties of the molecules. The best model underwent testing using a set of 10 drugs endorsed by the US Food and Drug Administration (FDA) specifically for the treatment of thrombocytopenia. (3) Results: The Hybrid CNN+DNN (HCD) model demonstrated the most effective predictive performance on the test dataset, achieving an accuracy of 98.3% and a precision of 97.0%. Both metrics surpassed the performance of the other models, and the model predicted that seven FDA drugs would exhibit activity. Isochlorogenic acid A, identified through screening the Chinese Pharmacopoeia Natural Product Library, was subsequently subjected to experimental verification. The results indicated a substantial enhancement in the differentiation and maturation of megakaryocytes (MKs), along with a notable increase in platelet production. (4) Conclusions: This underscores the potential therapeutic efficacy of isochlorogenic acid A in addressing RIT.


Assuntos
Ácido Clorogênico/análogos & derivados , Aprendizado Profundo , Trombocitopenia , Estados Unidos , Humanos , Redes Neurais de Computação , Algoritmos
3.
Environ Sci Pollut Res Int ; 30(51): 110579-110589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792190

RESUMO

Polystyrene nanoplastics (PS-NPs) have recently been found to be present in human blood and kidney. However, the renal toxicity of PS-NPs and the underlying mechanisms have not been fully elucidated. Here, we found that exposure of PS-NPs induced apoptosis of human renal proximal tubular epithelial cells (HK-2) in a size- and dose-dependent manner as revealed by AnnexinV-FITC assay. In addition, PS-NPs promoted ROS production and caused structure changes of mitochondrial and endoplasmic reticulum. Mechanistically, transcriptional sequencing indicated the involvement of MAPK pathway in apoptosis, which was further confirmed by the upregulation of p-p38, p-ERK, CHOP, BAX, cytochrome C, and caspase 3 expression. This study clarified the molecular mechanism underlying PS-NP-induced apoptosis in HK-2 cells and contributed to our risk estimation of PS-NPs in human kidney.


Assuntos
Nanopartículas , Poliestirenos , Humanos , Poliestirenos/metabolismo , Microplásticos , Túbulos Renais Proximais/metabolismo , Linhagem Celular , Estresse Oxidativo , Sistema de Sinalização das MAP Quinases , Células Epiteliais , Apoptose
4.
Phytomedicine ; 116: 154867, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257327

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE: This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS: We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS: We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION: In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Ácido Elágico/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Polifenóis/farmacologia , Metabolismo dos Lipídeos , Cumarínicos/farmacologia
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 25(6): 1390-6, 2008 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-19166216

RESUMO

IFN-gamma and TNF-alpha were co-coupled to the polystyrene cell culture plate by the photo-immobilization method. To investigate the synergistic effect of IFN-gamma and TNF-alpha on the HeLa cells, HeLa cells were treated with co-coupled cytokine or non-coupled cytokine in a time course in this study. The morphology detection, cell cycle analysis by flow cytometry, phosphatidyl serine analysis and capase-3 activity detection demonstrated that the two kinds of treatments both induce HeLa cells apoptosis. Non-coupled cytokine worked more quickly while co-coupled cytokine kept more permanent effect. The caspase-3 activity assay indicated that the caspase-3 activity of HeLa cells treated with non-coupled cytokine is higher than that of HeLa cells treated with co-coupled cytokine. This may imply that co-coupled cytokine not only induces the caspase-dependent pathway, but also induces the caspase-independent pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Imobilizadas/farmacologia , Interferon gama/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Caspase 3/metabolismo , Sinergismo Farmacológico , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA